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Abstract
We study the mass transportation on a rotary by cellular automata. Various
on- and off-ramps are introduced to allow particles to move in and out of the
rotary. We obtain the exact results analytically. Distinct phases of the traffic
flow are classified completely. Phase diagrams in the full parameter space are
derived. We show that the bulk properties and the phase transitions are totally
controlled by the operation of ramps. The ramps provide a means to stabilize
the density difference on the rotary and thus to support the maximum flow as
a distinct phase. The efficiency of transportation can be enhanced by adding
more ramps to the rotary. Adding off-ramps is more effective in a low density
region, while adding on-ramps is more effective in a high density region. The
transition regime between free flow and congestion can be controlled by the
order of ramps. When the on-ramps and the off-ramps are located alternately
to each other, the intermediate phases are significantly suppressed.

PACS numbers: 89.40.−a, 05.40.−a

1. Introduction

Transportation is an interesting topic and has many applications in modern society [1, 2]. One
of the main concerns is to keep the process in the free-flow regime and to avoid the emergence
of congestion. Thus, a better understanding of the transition mechanism has always been
the focus of research interests. In statistical physics, the phase transition is characterized
by the order parameter, which often reflects the bulk property. Conventionally, bulk density
is taken as an indicator of the transition, since congestion always appears in a high density
region. However, transportation is basically a one-dimensional non-equilibrium process. The
phase transition might be better characterized as the boundary-induced [3, 4] instead of the
bulk-induced process. Although the ramps only constitute a negligible part of the roadway,
various types of complex flow have been observed near the ramps [5–7]. The ramps can be
taken as non-trivial boundaries to trigger the phase transitions in bulk. In practice, the ramps
become crucial parts to monitor and to control the transitions.

In this work, we study the mass transportation on a rotary. Traffic conditions are fully
controlled by the operation of ramps [8]. We are able to obtain the exact phase diagrams
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Figure 1. System configuration of a traffic rotary with two ramps. The particles move clockwise
as shown by the grey arrows. The upper and lower branches are labelled as section 1 and section 2,
respectively.

analytically. All the distinct phases in a full parameter space can be classified completely. The
model will be introduced in the following section. Two issues will be addressed separately.
Section 3 presents the discussions on the number of ramps. The order of ramps will be
discussed in section 4.

2. Model

Instead of continuous differential equations, the dynamics is prescribed by cellular automata.
Both space and time are discretized. The rotary is taken as a one-dimensional circular lattice.
Each site can be accommodated by one particle only. At each time step, a particle hops forward
to the next site provided it is empty in the previous time step. This update rule is applied to
all particles synchronously, which is known as a parallel-update scheme and provides much
stronger correlation than the conventional sequential-update scheme does. As the movement
is along one direction only, the dynamics is also known as an asymmetric simple exclusion
process (ASEP) [9, 10]. The number of particles on the rotary is not a conserved quantity.
Particles are allowed to move in and out of the rotary through the ramps. Each ramp is a
predestinated site operated by a stochastic rate. At the on-ramp, a new particle will be injected
with a probability α when the site is empty; at the off-ramp, when the site is occupied, the
particle will be removed with a probability β. These rates are the control parameters of the
system.

For a simple configuration shown in figure 1, the rotary can be effectively divided into two
homogeneous sections labelled by 1 and 2. The operation of the on-ramp α can be replaced
by an effective injection α′ for section 1 and an effective removal β ′ for section 2, and the
off-ramp β by an effective removal β ′′ for section 1 and an effective injection α′′ for section 2.
The traffic conditions can then be specified in section 1 by α′ and β ′′ and in section 2 by α′′

and β ′. These effective rates can be obtained by a self-consistent mean-field theory [8]. In the
free flow, the traffic is controlled by the injection, i.e.

ρ1 = j1 = α′

1 + α′ , ρ2 = j2 = α′′

1 + α′′ , (1)

where ρ and j denote bulk density and flow, respectively, within each section, which is
indicated by the subscript. The flow conservation across the on-ramp and off-ramp gives the



Transportation on the rotary 14251

following equations:

j2 + (1 − ρ1)α = j1, j1 − ρ1β = j2. (2)

It is interesting to note that the local densities at the on-ramp and off-ramp assume the same
value as the bulk density in section 1. These equations can also be expressed as

α′′

1 + α′′ +
1

1 + α′ α = α′

1 + α′ ,
α′

1 + α′ − α′

1 + α′ β = α′′

1 + α′′ . (3)

Together, the effective injection can be solved,

α′ = α

β
, α′′ = α(1 − β)

β(1 + α)
. (4)

For asymmetric simple exclusion processes in the free-flow regime, the bulk properties are
determined by the injection boundary. The local density at the removal boundary might be
different from the bulk value. The self-consistence at the effective removal boundary gives
the following equations:

ρ1β
′ = j2, ρ1β

′′ = j1. (5)

These equations can be expressed as

α′

1 + α′ β
′ = α′′

1 + α′′ ,
α′

1 + α′ β
′′ = α′

1 + α′ . (6)

The effective removal can then be solved,

β ′ = 1 − β, β ′′ = 1. (7)

To ensure the free-flow conditions, the constraints α′ < β ′′ and α′′ < β ′ have to be imposed.
It is easy to see that the free flow in section 1 provides the crucial constraint α < β for free
flow on the rotary.

In the congestion, the traffic is controlled by the removal, i.e.

ρ1 = 1 − j1 = 1

1 + β ′′ , ρ2 = 1 − j2 = 1

1 + β ′ . (8)

The flow conservation gives the following equations:

β ′

1 + β ′ +
β ′′

1 + β ′′ α = β ′′

1 + β ′′ ,
β ′′

1 + β ′′ − 1

1 + β ′′ β = β ′

1 + β ′ . (9)

The effective removal can be solved,

β ′ = β(1 − α)

α(1 + β)
, β ′′ = β

α
. (10)

The self-consistence at the effective injection boundary gives the following equations:

β ′′

1 + β ′′ α
′ = β ′′

1 + β ′′ ,
β ′′

1 + β ′′ α
′′ = β ′

1 + β ′ . (11)

The effective injection can then be solved,

α′ = 1, α′′ = 1 − α. (12)

To ensure the congestion conditions, the constraints α′ > β ′′ and α′′ > β ′ have to be imposed.
Again, the congestion in section 1 provides the crucial constraint α > β for congestion on the
rotary.

On a homogeneous roadway, the traffic conditions can be categorized into free flow (F)
and jam (J). With a naive combination, the two sections could provide four distinct phases.
However, only two of them can be realized. When the injection α is less than the removal β,
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Figure 2. α dependence of the bulk densities at β = 0.5. The numerical simulations can be
correctly reproduced by the analytical results, which are shown by the solid lines. The results for a
simple roadway are shown by the grey dashed line. The numerical data are obtained by simulations
on a rotary of 2000 sites, with each branch consisting of 1000 sites. As the bulk densities are
plotted separately for each branch, the results are independent of both the rotary size and the ratio
between the two branches.

free flow can be maintained in both sections; when the injection α is larger than the removal
β, both sections become congested. It is impossible to have one section congested while the
other free of jams. The typical bulk densities ρ1 and ρ2 for these two sections are shown in
figure 2. The analytical expressions can be summarized as follows:

(FF) ρ1 = α

α + β
, ρ2 = ρ1(1 − β); (13)

(JJ) ρ1 = α

α + β
, ρ2 = ρ1(1 + β). (14)

As α and β vary, ρ1 changes continuously, while ρ2 displaces an abrupt transition at α = β.
It is interesting to note that the phase diagram is the same as in the case of a simple straight
roadway, i.e. α < β for free flow and α > β for congestion. However, the α dependence
of the density is quite different. The comparison is also shown in figure 2. For a straight
roadway, the density saturates after the transition, i.e. the density becomes independent of α

in the jam phase. (In the free-flow phase, the density is independent of β.) For a straight
roadway, the density depends only on one of the two control parameters. With the rotary, the
density depends on both α and β. Thus, in the jam phase shown in figure 2, both ρ1 and ρ2

continue to rise as α further increases.

3. Number of ramps

Now we consider the effect of adding one more ramp. With one more off-ramp, the
configuration is shown in the inset of figure 4. The analytical results can be derived similarly
as in the previous section (see the appendix). To compare with the basic two-ramp model
shown in figure 1, we assume that the two off-ramps are operated at the same rate, which
is simply taken as β/2 to have the total rate fixed at β. As the rotary is now divided into
three sections, the naive combination would predict eight possible phases. In fact, only the



Transportation on the rotary 14253

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

β

α

F-F-F

J-J-J

M-F-J

1

Figure 3. Phase diagram for a rotary with three ramps. The solid lines show the results for one
on-ramp and two off-ramps (inset of figure 4). The dotted lines show the results for two on-ramps
and one off-ramp (inset of figure 5).

following three distinct phases can be realized:

(FFF) α < β − 1
4β2, (15)

(MFJ) β − 1
4β2 < α < β + 1

4β2, (16)

(JJJ) α > β + 1
4β2. (17)

Besides free flow (F) and jam (J), the maximum flow (M) is observed as a new phase. The
phase diagram is shown in figure 3. Basically, when the injection is small (and the removal is
large), the free flow can be maintained in all the three sections; when the injection is large (and
the removal is small), all the three sections are congested. The transition between these two
conventional phases can still be observed as along the line α = β. The newly added off-ramp
provides a mean to stabilize the occurrence of maximum flow. The transition boundary is
extended into a distinct phase (MFJ), where section 1 is saturated to the maximum flow, free
flow is maintained in section 2 and traffic jams dominate in section 3. Such effects are most
prominent when both α and β are large. The results of bulk densities are shown in figure 4.
As the maximum flow can only be stabilized in section 1, ρ1 changes continuously, while both
ρ2 and ρ3 displace abrupt transitions. In the low density free flow, we have ρ1 > ρ2 > ρ3,
while in the high density congestion, we have ρ1 < ρ2 < ρ3. The transition of ρ3 appears at
a smaller α; the transition of ρ2 appears at a larger α. In between these two transitions, ρ1

is fixed at the maximum flow. The analytical expressions for the above results can also be
obtained as follows:

(FFF) ρ1 = α

α + β − β2

4

, ρ2 = ρ1

(
1 − β

2

)
, ρ3 = ρ1

(
1 − β

2

)2

; (18)

(MFJ) ρ1 = 1

2
, ρ2 = ρ1

(
1 − β

2

)
, ρ3 = ρ1(1 + α); (19)

(JJJ) ρ1 = α

α + β + β2

4

, ρ2 = ρ1

(
1 +

β

2

)
, ρ3 = ρ1

(
1 +

β

2

)2

. (20)
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Figure 4. α dependence of the bulk densities on a rotary with one on-ramp (α) and two off-ramps
(β1, β2). The system configuration is shown in the inset. The rotary is divided into three parts
labelled by the number. To compare with figure 2, we assume β1 = β2 = β/2 = 0.25. The
analytical results are shown by the solid lines, which reproduce the data correctly. Again, the
numerical data are independent of the length scales.
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Figure 5. α dependence of the bulk densities on a rotary with two on-ramps (α1, α2) and one
off-ramp (β). The system configuration is shown in the inset. In contrast to figure 4, the number
indexes 1, 2, 3 are now labelled against the traffic direction. We assume α1 = α2 = α/2 and
β = 0.5. The analytical results are shown by the solid lines, which reproduce the data correctly.

In contrast, if an on-ramp is added, the configuration is shown in the inset of figure 5,
where the two on-ramps are operated at the same rate of α/2 to have the total rate fixed at α.
The same three phases can be observed with a slight shift in the boundary, see figure 3. The
analytical results can be expressed as follows:

(FFF) β > α + 1
4α2, (21)

(MJF) α − 1
4α2 < β < α + 1

4α2, (22)

(JJJ) β < α − 1
4α2. (23)
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We note that if the index is relabelled as along the traffic direction, the middle phase will
become (MFJ) again. It is interesting to observe that these two cases can be mapped into each
other by the time reversal symmetry: α ↔ β, ρ ↔ (1 − ρ), F (free) ↔ J (jam). The results of
bulk densities are shown in figure 5. The analytical results can also be obtained as follows:

(FFF) ρ1 = 1 − β

β + α + α2

4

,

ρ2 = 1 − (1 − ρ1)
(

1 +
α

2

)
,

ρ3 = 1 − (1 − ρ1)
(

1 +
α

2

)2
;

(24)

(MJF) ρ1 = 1

2
,

ρ2 = ρ1

(
1 +

α

2

)
,

ρ3 = ρ1(1 − β);

(25)

(JJJ) ρ1 = 1 − β

β + α − α2

4

,

ρ2 = 1 − (1 − ρ1)
(

1 − α

2

)
,

ρ3 = 1 − (1 − ρ1)
(

1 − α

2

)2
.

(26)

The above expressions have been manipulated to show the symmetry explicitly. For both
cases, the maximum flow emerges between an on-ramp and an off-ramp. The on-ramp is
located before the off-ramp along the traffic direction. As α increases, the abrupt transition
moves against the traffic direction, i.e. it first emerges in the upstream of the maximum flow
and then propagates against the traffic direction to the downstream of the maximum flow.

Theoretically, we can compare figure 4 and figure 5 quantitatively at fixed α and β. Higher
densities are found in the former. Compared to adding one on-ramp to the basic configuration
shown in figure 1, adding one off-ramp results in higher densities in both low density regime
and high density regime. In the low density free flow, higher density implies higher flow, while
in the high density congestion, higher density results in lower flow. In such comparisons, the
total rate is fixed. When two ramps of the same kind are involved, the total rate is equally
shared by the two ramps.

4. Order of ramps

Next, we consider the rotary with four ramps shown in the inset of figure 7. In this
configuration, the maximum flow can only be observed in section 1. As the congestion
developed, the traffic jams first emerge in section 4. Then the jams appear in section 3, as
against the traffic direction. Finally, the traffic jams emerge in section 2 just before the entire
rotary becomes congested. In total, there are four distinct phases as follows:

(FFFF) α + 1
4α2 < β − 1

4β2, (27)

(MFFJ) α − 1
4α2 < β − 1

4β2 < α + 1
4α2, (28)

(MFJJ) β − 1
4β2 < α − 1

4α2 < β + 1
4β2, (29)
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Figure 6. Phase diagram for a rotary with four ramps (inset of figure 7).
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Figure 7. α dependence of the bulk densities on a rotary with four ramps. The system configuration
is shown in the inset. We assume α1 = α2 = α/2 and β1 = β2 = β/2. Again, the numerical data
can be exactly reproduced by the analytical results.

(JJJJ) β + 1
4β2 < α − 1

4α2. (30)

The phase diagram is shown in figure 6. Two intermediate phases develop in between
the transition from free flow (FFFF) to the congestion (JJJJ). With section 1 saturated to
maximum flow, section 2 (downstream) must be free of jams and section 4 (upstream) must
be congested. The traffic in section 3 can be either free or jammed, which results in two
intermediate phases. The onset of the transitions is signified by the saturation in section 1. As
α increases, the congestion emerges from the upstream and moves against the traffic direction
to the downstream. The bulk densities are shown in figure 7. Again, the density in section 1
changes continuously, while abrupt transitions appear in the other three sections. In the free-
flow regime, section 1 has the highest density; in the congestion regime, the density in section 1
becomes the lowest one.
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Figure 8. Compared to figure 7, the locations of α2 and β2 are switched. The intermediate phases
disappear.

The four-ramp rotary can have a different topology, as shown in the inset of figure 8.
Compared to figure 7, the order of ramps has been rearranged. The on-ramps and off-ramps are
now distributed alternately along the rotary. By symmetry, section 1 is equivalent to section 3,
and section 2 is equivalent to section 4. It is interesting to observe that, when assuming
α1 = α2 = α/2 and β1 = β2 = β/2, there are only two distinct phases as follows:

(FFFF) α < β, (31)

(JJJJ) α > β. (32)

The four sections can only be all congested or all freed of jams. There are no intermediate
phases. As expected, the densities in sections 1 and 3 change continuously; the densities in
sections 2 and 4 show an abrupt jump at α = β, see figure 8.

5. Discussions

In this paper, we study the mass transportation on a rotary. Traffic conditions are fully
controlled by the operation of ramps, which can be taken as non-trivial boundaries to trigger
the phase transitions in bulk. We are able to obtain the exact phase diagram analytically. The
distinct phases in a full parameter space can be classified completely. With a simple model,
we show that the situations in between any two consecutive ramps can be categorized into free
flow, congestion and maximum flow. However, not all the combinations can be realized on the
rotary. Along the traffic direction, the free flow will not follow the congestion directly. When
both free flow and congestion coexist on the rotary, there must involve a section of maximum
flow in the middle. The section of maximum flow must be started at the on-ramp and ended
at the off-ramp.

As we focus on the bulk properties, the phase diagram provides a convenient tool to classify
the distinct traffic states. Along the phase boundaries, coexistent phases can be expected. For
example, along the boundary between (FFF) and (MFJ) in figure 3, a conventional domain
well can be observed in section 3 of the rotary. The free flow can be sustained near the
junction connected to section 2, while the congestion persists near the junction connected to
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section 1. Similarly, along the boundary between (MFJ) and (JJJ) in figure 3, a domain well
can be observed in section 2. It is interesting to note that the domain well will not appear in
section 1, where the maximum flow emerges. In this simple model, the density profile is flat
except along the phase boundary and/or near the ramps. We show that the bulk density can
be obtained by the mean-field theory, which is also confirmed by numerical simulations. To
obtain the non-flat distribution near the ramps, more elaborate methods have to be resorted. As
the ramp consists of a single site on the lattice, the system can be decoupled into homogeneous
subsystems. The effective rates for each homogeneous section can be uniquely determined.
The local density at the ramp is also correctly prescribed. Thus, we would expect that the
matrix product ansatz developed in the homogeneous system can be applied to give a detailed
density profile on the rotary.

In the conventional boundary-induced phase transitions, i.e. along a simple roadway with
two open ends, the bulk properties depend only on one of the two boundaries. In the phase
of free flow, the traffic flow is controlled by the injection boundary and can be written as
α/(1 + α). In the phase of congestion, the traffic flow is then controlled by the removal
boundary and can be written as β/(1 + β). Thus, tuning the removal boundary in the low
density regime will only result in a slight change in the boundary layer. Similarly, tuning the
injection boundary in the high density regime will have no effects on the bulk properties. With
a rotary, in contrast, the traffic flow for effective transportation from an on-ramp to off-ramp
depends on both boundaries and can be written as αβ/(α + β). The same expression can be
applied to both free flow and congestion. As can be expected, the efficiency of transportation
is reduced. At the off-ramp, not all the particles will be removed. With a finite probability
(1 − β), a particle might be left on the rotary. However, the traffic flow can now be controlled
by both α and β. The dependence on both parameters could provide more flexibility to implant
the control scheme and to monitor the traffic conditions.

With fixed total injection α and total removal β, the efficiency of transportation can be
enhanced by adding more ramps to the rotary, either on-ramps or off-ramps. In the low density
region, the increase of efficiency can be observed as the increase of bulk density, while in
the high density region, the increase of efficiency results in a decrease of bulk density. We
observed that adding one off-ramp always results in a higher bulk density than adding one
on-ramp does. To have a reasonable comparison, the operation rates of the ramps should be
properly rescaled. With N on-ramps and M off-ramps, the injection rate at each on-ramp is
α/N and the removal rate at each off-ramp is β/M . Thus, the total rates are fixed and shared
equally. We then have the conclusion that adding an off-ramp is more effective in a low density
region, while adding an on-ramp is more effective in a high density region. In the case of N
on-ramps and M off-ramps, the free flow can be maintained in the entire rotary in the regime:

(
1 +

α

N

)N

− 1 < 1 −
(

1 − β

M

)M

. (33)

On the other end, the entire rotary is congested in the regime:

1 −
(

1 − α

N

)N

>

(
1 +

β

M

)M

− 1. (34)

In between these two phases, there are (N +M −2) intermediate phases along the strip α ∼ β.
The special cases of section 3 can be reproduced as (N = 1,M = 2) and (N = 2,M = 1).

As the efficiency is mainly controlled by the number of ramps, the order of ramps has a
great influence on the intermediate phases in the transition. Basically, there are two different
kinds of arrangement. In the first kind, the on-ramps are near to each other and located on
one side of the rotary, while the off-ramps are on the other side. Then the maximum flow can
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only be supported in a single section of the rotary. The free flow and the congestion are well
separated by various intermediate phases. In the second kind, the on-ramps and off-ramps are
located alternately to each other. The maximum flow can be supported in multiple sections of
the rotary. When the injection rate α is spread uniformly among the on-ramps and the removal
rate β among the off-ramps, the intermediate phases are significantly suppressed. In figure 8,
all the intermediate phases disappear. These are only two distinct phases: (FFFF) and (JJJJ).
If this constraint is removed, i.e. the four ramps are specified independently by α1, α2, β1, β2,
there are six distinct phases as follows:

(FFFF) A1 − B2 < min[2α1β1, 2α2β2], (35)

(JJJJ) B1 − A2 < min[2α1β1, 2α2β2], (36)

(MFFJ) B2 + 2α2β2 < A1 < B1, (37)

(MFJJ) A2 + 2α2β2 < B1 < A1, (38)

(FJMF) B2 + 2α1β1 < A1 < B1, (39)

(JJMF) A2 + 2α1β1 < B1 < A1, (40)

where A1 ≡ (α1 + α2 + α1α2), A2 ≡ (α1 + α2 − α1α2), B1 ≡ (β1 + β2 + β1β2) and B2 ≡
(β1 + β2 − β1β2). In contrast, for the first kind of arrangement shown in figure 7, the number
of distinct phases remains at four:

(FFFF) A1 − B2 < 0, (41)

(JJJJ) B1 − A2 < 0, (42)

(MFFJ) A2 < B2 < A1, (43)

(MFJJ) B2 < A2 < B1. (44)

As the number of ramps further increases, the results can be easily extended.

Appendix

For the configuration shown in the inset of figure 4, the rotary can be effectively divided into
three homogeneous sections labelled by 1, 2 and 3. The operation of α, β1 and β2 can be
replaced by effective rates (α′, β ′), (α′′, β ′′) and (α′′′, β ′′′), respectively. The traffic conditions
can then be specified by (α′, β ′′) in section 1, (α′′, β ′′′) in section 2 and (α′′′, β ′) in section 3.
In the free flow, the traffic is controlled by the injection as

ρ1 = α′

1 + α′ , ρ2 = α′′

1 + α′′ , ρ3 = α′′′

1 + α′′′ . (A.1)

The flow conservation across the ramps gives the following equations:

α′′′

1 + α′′′ +
1

1 + α′ α = α′

1 + α′ ,

α′

1 + α′ − α′

1 + α′ β1 = α′′

1 + α′′ ,

α′′

1 + α′′ − α′′

1 + α′′ β2 = α′′′

1 + α′′′ .

(A.2)
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The analytical expressions for the effective injection can be obtained:

α′ = α

β1 + β2 − β1β2
,

α′′ = α(1 − β1)

β1 + β2 − β1β2 + αβ1
,

α′′′ = α(1 − β1)(1 − β2)

(1 + α)(β1 + β2 − β1β2)
.

(A.3)

The self-consistence at the effective removal boundary gives the following equations:

α′

1 + α′ β
′ = α′′′

1 + α′′′ ,
α′

1 + α′ β
′′ = α′

1 + α′ ,
α′′

1 + α′′ β
′′′ = α′′

1 + α′′ . (A.4)

The analytical expressions for the effective removal can then be obtained:

β ′ = (1 − β1)(1 − β2), β ′′ = 1, β ′′′ = 1. (A.5)

The free-flow conditions impose the constraints α′ < β ′′, α′′ < β ′′′ and α′′′ < β ′. It can be
shown that the free flow in section 1 provides the crucial constraint α < (β1 + β2 − β1β2) for
free flow on the rotary.

Similarly, the traffic in the congestion is controlled by the removal as

ρ1 = 1

1 + β ′′ , ρ2 = 1

1 + β ′′′ , ρ3 = 1

1 + β ′ . (A.6)

The flow conservation gives the following equations:

β ′

1 + β ′ +
β ′′

1 + β ′′ α = β ′′

1 + β ′′ ,

β ′′

1 + β ′′ − 1

1 + β ′′ β1 = β ′′′

1 + β ′′′ ,

β ′′′

1 + β ′′′ − 1

1 + β ′′′ β2 = β ′

1 + β ′ .

(A.7)

The effective removal can be solved,

β ′ = (1 − α)(β1 + β2 + β1β2)

α(1 + β1)(1 + β2)
,

β ′′ = β1 + β2 + β1β2

α
,

β ′′′ = β1 + β2 + β1β2 − αβ1

α(1 + β1)
.

(A.8)

The self-consistence at the effective injection boundary gives the following equations:

β ′′

1 + β ′′ α
′ = β ′′

1 + β ′′ ,
β ′′

1 + β ′′ α
′′ = β ′′′

1 + β ′′′ ,
β ′′′

1 + β ′′′ α
′′′ = β ′

1 + β ′ . (A.9)

The effective injection can then be solved,

α′ = 1, α′′ = β1 + β2 + β1β2 − αβ1

β1 + β2 + β1β2
, α′′′ = (1 − α)(β1 + β2 + β1β2)

β1 + β2 + β1β2 − αβ1
. (A.10)

The congestion conditions impose the constraints α′ > β ′′, α′′ > β ′′′ and α′′′ > β ′. Again, the
congestion in section 1 provides the crucial constraint α > (β1 + β2 + β1β2) for congestion on
the rotary.
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In the transition region in between free flow and congestion, i.e. (β1 + β2 − β1β2) < α <

(β1 + β2 + β1β2), these effective rates can also be obtained by the self-consistent mean-field
approach as

α′ = 1, α′′ = 1 − β1

1 + β1
, α′′′ = β2(1 − α)

β1 + 2β2 − α
, (A.11)

β ′ = 1 − α

1 + α
, β ′′ = 1, β ′′′ = β2(1 − β1)

α − β1
. (A.12)

The traffic conditions on the rotary can be specified as α′ = β ′′ = 1, α′′ < β ′′′ and α′′′ > β ′,
i.e. the (MFJ) phase. The bulk densities have the following simple expressions:

ρ1 = 1
2 , ρ2 = 1

2 (1 − β1), ρ3 = 1
2 (1 + α). (A.13)

The analytical results for other rotaries can also be derived by similar approaches.
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